
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 15. October 2018
Markus Püschel, David Steurer

Algorithms & Data Structures Homework 4 HS 18

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Exercise 4.1 Depth-First Search.

Execute a depth-�rst search (Tiefensuche) on the following graph starting from vertexA (using a stack,
as seen in lecture). Assume that we push successor vertices (Nachfolger) on the stack in reverse alphabe-
tical order. (For example, if the successors are R and U , then we �rst U push on the stack and then R.)

A I C

H E G

B F D

F

T B

T
T

T

T
T

T

C

T

C

1. Mark the edges that belong to the depth-�rst tree (Tiefensuchbaum) with a “T” (for tree edge).

2. For each vertex, give its pre- and post-number.

Solution: A (1,18), H (2,17), B (3,4), F (5,16), F (6,9), D (7,8), G (10,11), I(12,15), C (13,14)

3. Mark every forward edge (Vorwärtskante) not in the depth-�rst tree with an “F”, every backward
edge (Rückwärtskante) with an “B”, and every cross edge (�erkante) with a “C”.

4. Has the above graph a topological ordering? How can we use the above execution of depth-�rst
search in order to see this?

Solution: �e decreasing order of the post-numbers gives a topological ordering, whenever the
graph is acyclic. In our graph, this is not the case, as it contains tha cycle (H → E → I → H).
As a rule of thumb, there is no topological ordering whenever there is a backward edge in the
comparison tree.



Exercise 4.2 Breadth-First Search (2 Points).

On the following graph, execute a breadth-�rst search (Breitensuche) starting from vertex A (using a
queue, as seen in the lecture). Assume that successor vertices (Nachfolger) are enqueued in alphabetical
order.

A I C

H E G

B F D

1. Write down the order in which the vertices are dequeued during this execution of breadth-�rst
search.
Solution: A, H, I, B, E, C, F, G, D

2. As seen in the lecture, breadth-�rst search can be used to determine the distances for all vertices
from the start vertex. �ese distances partition the graph into level sets L0, L1, L2, . . ., where Li

is the set of all vertices with distance i from the start vertex.

Use the above execution of breadth-�rst search to compute the distances from the start vertex
and write down these level sets.

Solution: A: 0, H: 1, I: 1, B: 2, E: 2, C: 2, F: 3, G: 3, D: 4

3. Consider the following questions about level sets L0, L1, . . . computed by breadth-�rst search in
directed and undirected graphs. Justify your answer.

• In a directed graph, can there be an edge from a level set Li with i ≥ 2 to a level set Lj

with j ≤ i− 2?

Solution: Consider the above graph. Add an edge from F to H. �en there is an edge from
distance 3 to 1, so there can be such an edge.

• In an undirected graph, can there be an edge from a level set Li with i ≥ 2 to a level set Lj

with j ≤ i− 2?

Solution: No. Suppose there is an undirected graph with such an edge. �is means that
there is an edge from a vertex a in Li to a vertex b in Lj . Because the graph is undirected,
there is an edge from b to a. �e distance of b is j, so the distance of the vertex a is at most
j + 1. �erefore a cannot be in level set Li. �is is a contradiction.

• In a directed graph, can there be an edge from a level set Li with i ≥ 0 to a level set Lj if
j ≥ i+ 2?

Solution: No. Suppose there is a directed graph with such an edge. �is means that there
is an edge from a vertex a in Li to a vertex b in Lj .

2



�e level sets correspond to distances from a source vertex. Since a is in Li, it a distance i.
If there is an edge from a to b, then the distance of b can be no more than i+1. However, b
is in the level set Lj , so by de�nition it has distance j ≥ i+ 2. �is is a contradiction.

4. LetG be a connected undirected graph, let s be a vertex inG, and let L0, L1, . . . be the level sets
computed by breadth-�rst search starting from vertex s. Prove that G is bipartite if and only if
there are no edges between two vertices in the same level set Li.

Solution:

• First, we prove if there are no edges between two vertices in the same level set Li, then
G is bipartite. Assume that a connected undirected graph has no edges between vertices
at the same distance to a source vertex. Perform a BFS from the source vertex. Color each
vertex of the graph according to its distance to the source node. Even distances (and zero)
are colored red, and odd distances are colored blue.

From the previous question (4.2.3), we know that there cannot be an edge from vertex a
from level Ld to vertex b at level Le, where e > d+ 1, and there cannot be an edge from a
vertex in levelLd to a vertex in levelLe, where e < d−1. �erefore the only edges between
levels are those edges between adjacent levels, and those levels are colored di�erently.�ere
are no edges within a level, so all edges are between nodes of di�erent colors.

Because the graph can be colored with only two colors, it is bipartite.

• Next we prove if G is bipartite then there are no edges between two vertices in the same
level set Li. Assume that a connected undirected graph is bipartite. Color the graph with
two colors. Choose a source node and perform a BFS.

We must argue that every vertex at some distance must be the same color. We can do this
by mathematical induction.

Base case: �e only vertex at distance 0 is the source node, and it has some color.

Inductive hypothesis: Every vertex at distance k has the same color.

Inductive step: Assume that every vertex at distance k has the same color. Each vertex at
distance k + 1 has an edge to a vertex at distance k, so it must have the other color. By the
principle of mathematical induction, every vertex at the same distance to the source node
must have the same color.

�ere can be no edges between vertices at the same level because the graph is bipartite, and
all edges at one level have the same color.

Exercise 4.3 Asymptotic Notation.

1. Suppose f satis�es the condition f(n) ≥ 1 for all n ≥ 1. Show that if g ≤ O(f), then for every
D ≥ 0, we have g(n) +D ≤ O(f(n)).

Solution:WhenD is zero, it is trivially true. AssumeD > 0. We know that g ≤ O(f). �en for
some C0 > 0, ∀n ≥ 1, g(n) ≤ C0f(n). Add D to both sides.

g(n) +D ≤ C0f(n) +D

Since f(n) ≥ 1, D ≤ Df(n)

g(n) +D ≤ C0f(n) +D ≤ C0f(n) +Df(n) = (C0 +D)f(n)

3



Let C1 = C0 +D. �en ∀n ≥ 1, g(n) +D ≤ C1f(n)

2. Let f(n) = 1
n , and g(n) = f(n) + 1. Does g(n) ≤ O(f(n)) hold? Justify your answer.

Solution: No. If g(n) ≤ O(f(n)), ∃C > 0,∀n > 1, 1
n + 1 ≤ C 1

n

But for large n, 1
n asymptotically approaches zero. �e le� hand side asypmtotically approaches

one, and the right hand side asymptotically approaches zero, so the inequality is not true.

3. In class, we de�ned O(f) to consist of all functions g(n) such that

∃C > 0. ∀n ≥ 1. g(n) ≤ C · f(n) .

Another de�nition forO(f), commonly found in the literature, includes all functions that satisfy
the a-priori weaker condition,

∃C > 0. ∃n0 ≥ 1. ∀n ≥ n0. g(n) ≤ C · f(n) .

(�is condition is a-priori weaker, because it requires the inequality g(n) ≤ C ·f(n) to hold only
for all n ≥ n0 instead of for all n ≥ 1.)

Prove that the two de�nitions of O(f) are in fact equivalent if the function f satis�es f(n) > 0
for all n ≥ 1 (which is typically the case for functions that arise as running times of algorithms).

Solution:

In order to prove an equivalence, we need to �rst assume the �rst property and then prove the
second, and then assume the second property and prove the �rst.

Assume the �rst property is true. ∃C > 0,∀n ≥ 1, f(n) ≤ Cg(n).
Let n0 = 1. �en ∃C > 0, ∀n > n0, f(n) ≤ Cg(n). �us the second de�nition holds.

Assume the second property is true. ∃C0 > 0,∃n0 ≥ 1,∀n > n0, f(n) ≤ C0g(n). Let C1 =

max f(n)
g(n) , 1 ≤ n ≤ n0

�en ∀n, 1 ≤ n ≤ n0,
f(n)
g(n) ≤ C1. Divide by g(n). Since g(n) > 0,

f(n) ≤ C1g(n)∀n, 1 ≤ n ≤ n0

Let C2 = max(C0, C1). �en:

f(n) ≤ C2g(n)∀n, 1 ≤ n ≤ n0

and
f(n) ≤ C2g(n)∀n ≥ n0

�us the �rst property is true as well.

4. Show that, if we don’t require f to satisfy the condition f(n) > 0 for all n ≥ 1, the above two
de�nitions of O(f) are not necessarily equivalent.

Provide concrete functions f and g such that g satis�es the second de�nition ofO(f) but not the
�rst.

Solution:
f(n) = n

g(n) = n− 1

4



�e second de�nition holds. Let n0 = 2, C = 2. �en n ≤ 2(n− 1) is true as long as n ≥ 2.

�e �rst de�nition does not. We need to �nd a C > 0 such that ∀n > 1, n ≤ C(n − 1). In
particular, when n = 1, 1 ≤ C(1− 1). �is is impossible.

�erefore the de�nitions are not equivalent.

Exercise 4.4 Pouring water (1 Point).

We have three containers whose sizes are 15 liters, 9 liters, and 5 liters, respectively.�e 15-liter contai-
ner starts out full of water, but the 9-liter and 5-liter containers are initially empty. We are allowed one
type of operation: pouring the contents of one container into another, stopping only when the source
container is empty or the destination container is full. We want to �nd a shortest sequence of pourings
that leaves exactly 2 liters in one of the containers.

1. Model this as a graph problem: give a precise de�nition of the graph involved and state the speci�c
question about this graph that needs to be answered.

2. Find a shortest sequence of pourings which leaves exactly 2 liters in one of the containers. Prove
that this sequence is actually shortest.

Solution:

1. A set of vertices is a set of all possible triples (a, b, c), such that 0 ≤ a ≤ 15, 0 ≤ b ≤ 9, 0 ≤ c ≤ 5.
Vertices u = (a, b, c) and v = (d, e, f) are connected by a directed edge (from u to v), if we can
reach v from u by one pouring. We can reformulate the question in terms of this graph: Find a
shortest path from the initial vertex u0 = (15, 0, 0) to some vertex v = (a, b, c) such that a = 2,
or b = 2, or c = 2.

2. To �nd a shortest path from u0 = (15, 0, 0) to some vertex v = (a, b, c) such that a = 2, or
b = 2, or c = 2, we start BFS from u0. Let’s write a list of groups of vertices which are at the
same distances from u0, until we �nd suitable v.

• Vertices at distance d = 1: (6, 9, 0), (10, 0, 5).

• Vertices at distance d = 2: (1, 9, 5), (6, 4, 5), (10, 5, 0).

• Vertices at distance d = 3: (11, 4, 0), (5, 5, 5).

• Vertices at distance d = 4: (11, 0, 4), (5, 9, 1).

• Vertices at distance d = 5: (2, 9, 4), (14, 0, 1).

So (2, 9, 4) is the closest suitable vertex. Hence the shortest sequence of pourings is

(15, 0, 0)→ (6, 9, 0)→ (6, 4, 5)→ (11, 4, 0)→ (11, 0, 4)→ (2, 9, 4).

5


